메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
노태협 (한국과학기술원 테크노경영연구소) 유명환 (한국산업은행) 한인구 (한국과학기술원 테크노경영대학원)
저널정보
한국정보시스템학회 정보시스템연구 정보시스템연구 제14권 제1호
발행연도
2005.1
수록면
41 - 65 (25page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The credit ration is a significant area of financial management which is of major interest to practitioners, financial and credit analysts. The components of credit rating are identified decision models are developed to assess credit rating an the corresponding creditworthiness of firms an accurately ad possble. Although many early studies demonstrate a priori which of these techniques will be most effective to solve a specific classification problem. Recently, a number of studies have demonstrate that a hybrid model integration artificial intelligence approaches with other feature selection algorthms can be alternative methodologies for business classification problems. In this article, we propose a hybrid approach using rough set theory as an alternative methodology to select appropriate attributes for case-based reasoning. This model uses rough specific interest lies in lthe stable combining of both rough set theory to extract knowledge that can guide dffective retrevals of useful cases. Our specific interest lies in the stable combining of both rough set theory and case-based reasoning in the problem of corporate credit rating. In addition, we summarize backgrounds of applying integrated model in the field of corporate credit rating with a brief description of various credit rating methodologies.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0