메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
허강인 (동아대학교 전자공학과) 이광석 (창원전문대학 전자통신과) 김명기 (동아대학교 전자공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제12권 제6호
발행연도
1993.1
수록면
21 - 27 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
계층형 신경망은 패턴 분류를 위해 사용되어 왔다. 이것은 주어진 교사패턴들의 학습으로 원하는 입력-출력 간의 매핑을 할 수 있기 때문이다. 신경망은 타겟ㅌ트 패턴이 입력 패턴의 카테고리에 일치할 때 타겟트 패턴을 학습하므로서 사후 확률을 근사화할 수 있다. 그리고 입력 공간을 부분 공간으로 나누어 학습 데이터들의 비율로서 만든 타겟트 벡터들로 학습한 신경망은 확률밀도 함수를 나타낼 수 있다. 본 연구에서는 역전파 학습법을 이용한 계층형 NN 과 코드북으로서 사후 확률과 확률밀도함수의 측정방법을 제안하였다. VQ 로 추정한 사후확률고 확률밀도함수를 이용하여 학습이 필요없는 RBF network 의 일종인 PNN으로 모음 인식을 수행 하였다. 인식 실험에서 PNN 의 결과는 역전파 학습법을 이용항 3층 신경망과 VQ 의 평균 인식율과 비교되었다. VQ-PNN의 인식율이 다른 것보다 우수하게 나타났다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0