메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
손윤호 (국민대학교 비즈니스IT전문대학원) 김인규 (국민대학교 비즈니스IT학부) 김남규 (국민대학교 비즈니스IT학부)
저널정보
한국정보시스템학회 정보시스템연구 정보시스템연구 제18권 제4호
발행연도
2009.1
수록면
59 - 86 (28page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Data modeling can be regarded as a series of processes to abstract real-world business concerns. The conceptual modeling phase is often regarded as the most difficult stage in the entire modeling process, because quite different conceptual models may be produced even for similar business domains based on users' varying requirements and the data modelers' diverse perceptions of the requirements. This implies that an object considered as an entity in one domain may be considered as an attribute in another, and vice versa. However, many traditional knowledge-based automated database design systems unfortunately fail to construct appropriate Entity-Relationship Diagrams(ERDs) for a given set of requirements due to the rigid assumption that an object should be classified as an entity if it has been classified as an entity in previous applications. In this paper, we propose an alternative automation system which can generate ERDs from business descriptions using association rule mining technique. Our system can be differentiated from the traditional ones in that our system can perform data modeling only based on business description written by domain workers, rather than relying on any kind of knowledge base. Since the proposed system can produce various versions of ERDs from the same business descriptions simultaneously, users can have the opportunity to choose one of the ERDs as being the most appropriate, based on their business environment and requirements. We performed a case study for personnel management in a university to evaluate the practicability of the proposed system This paper summarizes the result of it in the experiment section.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0