메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김남의 (중앙대학교 대학원/융합보안학과) 신동천 (중앙대학교 산업보안학과)
저널정보
한국융합보안학회 융합보안논문지 융합보안논문지 제18권 제5호
발행연도
2018.1
수록면
45 - 51 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
데이터의 활용도와 중요성이 점차 높아짐에 따라 데이터와 관련된 사고와 피해는 점점 증가 하고 있으며, 특히 내부자에 의한 사고는 그 위험성이 더 높다. 이런 내부자의 공격은 전통적인 보안 시스템으로 방어하기 힘들어, 규칙 기반의 이상 행동 탐지 방법이 널리 활용되어오고 있다. 하지만, 새로운 공격 방식 및 새로운 환경과 같이 변화에 유연하게 적응하지 못하는 문제점을 가지고 있다. 본 논문에서는 이에 대한 해결책으로서 통계적 마르코프 모델 기반의 적응형 이상 이동 탐지 프레임워크를 제안하고자 한다. 이 프레임워크는 사람의 이동에 초점을 맞추어 내부자에 의한 위험을 사전에 탐지한다. 이동에 직접적으로 영향을 주는 환경 요소와 지속적인 통계 학습을 통해 변화하는 환경에 적응함으로써 오탐지와 미탐지를 최소화하도록 설계되었다. 프레임워크를 활용한 실험에서는 0.92의 높은 F2-점수를 얻을 수 있었으며, 나아가 정상으로 보여지지만, 의심해볼 이동까지 발견할 수 있었다. 통계 학습과 환경 요소를 바탕으로 행동과 관련된 데이터와 모델링 알고리즘을 다양화 시켜 적용한다면 보다 더 범위 넓은 비정상 행위에 대해 탐지할 수 있는 확장성을 제공한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0