메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이창훈 (한경대학교 컴퓨터공학과)
저널정보
한국인터넷방송통신학회 한국인터넷방송통신학회 논문지 한국인터넷방송통신학회 논문지 제10권 제5호
발행연도
2010.1
수록면
265 - 270 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
강화학습(reinforcement learning)은 동적 환경과 시행-착오를 통해 상호 작용하면서 학습을 수행한다. 그러므로 동적 환경에서 TD-학습과 TD(${\lambda}$)-학습과 같은 강화학습 방법들은 전통적인 통계적 학습 방법보다 더 빠르게 학습을 할 수 있다. 그러나 제안된 대부분의 강화학습 알고리즘들은 학습을 수행하는 에이전트(agent)가 목표 상태에 도달하였을 때만 강화 값(reinforcement value)이 주어지기 때문에 최적 해에 매우 늦게 수렴한다. 본 논문에서는 미로 환경(maze environment)에서 최단 경로를 빠르게 찾을 수 있는 강화학습 방법(GORLS : Goal-Directed Reinforcement Learning System)을 제안하였다. GDRLS 미로 환경에서 최단 경로가 될 수 있는 후보 상태들을 선택한다. 그리고 나서 최단 경로를 탐색하기 위해 후보 상태들을 학습한다. 실험을 통해, GDRLS는 미로 환경에서 TD-학습과 TD(${\lambda}$)-학습보다 더 빠르게 최단 경로를 탐색할 수 있음을 알 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0