메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제15권 제1호
발행연도
2005.2
수록면
1 - 5 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
강화학습(Reinforcement-Learning)의 목적은 환경으로부터 주어지는 보상(reward)을 최대화하는 것이며, 강화학습 에이전트는 외부에 존재하는 환경과 시행착오를 통하여 상호작용하면서 학습한다. 대표적인 강화학습 알고리즘인 Q-Learning은 시간 변화에 따른 적합도의 차이를 학습에 이용하는 TD-Learning의 한 종류로서 상태공간의 모든 상태-행동 쌍에 대한 평가 값을 반복 경험하여 최적의 전략을 얻는 방법이다. 본 논문에서는 강화학습을 적용하기 위한 예를 n-Queen 문제로 정하고, 문제풀이 알고리즘으로 Q-Learning을 사용하였다. n-Queen 문제를 해결하는 기존의 방법들과 제안한 방법을 비교 실험한 결과, 강화학습을 이용한 방법이 목표에 도달하기 위한 상태전이의 수를 줄여줌으로써 최적 해에 수렴하는 속도가 더욱 빠름을 알 수 있었다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 강화학습(reinforcement learning)
4. Q-Learning을 이용한 n-Queen알고리즘
5. 실험 및 평가
6. 결론
참고문헌
저자소개

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014900702