메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조석희 (Inha Technical College) 조규철 (Inha Technical College)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제25권 제9호(통권 제198호)
발행연도
2020.9
수록면
63 - 69 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이미지-이미지 변환은 입력 이미지를 통해서 목적 이미지를 만들어내는 기술로 최근 비지도 학습 구조인 GAN을 활용하여 더 실제와 같은 이미지를 만들어내는 높은 성과를 보였다. 이에 따라 GAN을 활용한 이미지-이미지 변환 연구는 다양하게 진행되고 있다. 이때 일반적으로 이미지-이미지 변환은 하나의 속성 변환을 목표한다. 그러나 실제 생활에서 사용되고 얻을 수 있는 자료들은 한 가지 특징으로 설명하기 힘든 다양한 특징으로 이루어진다. 그래서 다양한 속성을 활용하기 위하여 속성별로 이미지 생성 과정을 나누어 학습할 수 있도록 하는 다중 속성 변화를 목표로 한다면 더 이미지-이미지 변환의 역할을 잘 수행할 수 있을 것이다. 본 논문에서는 GAN을 활용한 이미지-이미지 변환 구조 중 높은 성과를 보인 CycleGAN을 활용해 이중 속성 변환 구조인 Multi CycleGAN을 제안한다. 이 구조는 입력 도메인을 두 가지의 속성에 대하여 학습하기 위하여 3개의 도메인이 양방향 학습을 진행하는 이중 변환 구조를 구현하였다. 새로운 구조를 통해 생성된 이미지와 기존 이미지-이미지 변환 구조들을 통해 생성된 이미지를 비교할 수 있도록 실험을 진행하였다. 실험 결과 새로운 구조를 통한 이미지는 입력 도메인의 속성을 유지하며 목표한 속성이 적용되는 높은 성능을 보였다. 이 구조를 활용한다면 앞으로 더 다양한 이미지를 생성하는 일이 가능지기 때문에 더 다양한 분야에서의 이미지 생성의 활용을 기대할 수 있다.

목차

Abstract
요약
Ⅰ. Introduction
Ⅱ. Related works
Ⅲ. Multi Cycle Consistent Adversarial network
Ⅳ. Experiment
Ⅴ. Conclusions
REFERENCES

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-001177380