메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김영진 (과학기술연합대학원대학교) 이동혁 (한국생산기술연구원) 박현준 (서울대학교) 박재한 (한국생산기술연구원) 배지훈 (한국생산기술연구원) 백문홍 (한국생산기술연구원)
저널정보
한국로봇학회(논문지) 로봇학회 논문지 로봇공학회 논문지 제12권 제2호
발행연도
2017.6
수록면
206 - 216 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
This paper proposes a method to simultaneously estimate two degrees of freedom in wrist forces (extension - flexion, adduction - abduction) and one degree of freedom in grasping forces using Electromyography (EMG) signals of the forearms. To correlate the EMG signals with the forces, we applied a multi - layer perceptron(MLP), which is a machine learning method, and used the characteristics of the muscles constituting the forearm to generate learning data. Through the experiments, the similarity between the MLP target value and the estimated value was investigated by applying the coefficient of determination (R²) and root mean square error (RMSE) to evaluate theperformance of the proposed method. As a result, the R² values with respect to the wrist flexionextension,adduction - abduction and grasping forces were 0.79, 0.73 and 0.78 and RMSE were 0.12, 0.17, 0.13 respectively.

목차

Abstract
1. 서론
2. 방법
3. 실험
4. 결론
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-559-001257156