메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jaejun Kim (Dongguk University) Myung-Kwan Park (Dongguk University)
저널정보
한국영어학회 영어학 영어학 Volume.20
발행연도
2020.3
수록면
745 - 767 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper deduces the freezing effects from Chomsky’s (2008, 2013, 2015) Labeling Algorithm. According to this Algorithm, when a minimal projection and a non-minimal projection merge, a minimal projection determines the label of the merger. When two non-minimal projections merge, there are two ways of implementing the labeling. One is via the trace convention; traces are ignored for the labeling algorithm. The other is via feature-sharing; the prominent features that are shared by two non-minimal projections also provide a label for the merger. We suggest in this paper that feature sharing is implemented by feature inheritance from a higher head to the head of its complement. Given the Labeling Algorithm, the freezing effects are to be accounted for in this paper. It is widely known that there is an asymmetry in sub-extraction from subject and object. The latter generally allows sub-extraction out of it, whereas the former does not. We argue following the long tradition of previous studies on this topic that when an element is base-merged as the complement of a head, it allows sub-extraction out of it. However, when the element which is labeling-wise unresolved is merged with a non-minimal projection, it disallows sub-extraction out of it. The freezing effects in various constructions follow from the system of labeling via feature inheritance and sharing.

목차

1. Introduction
2. Background: Labeling Algorithm
3. Sub-extraction Asymmetry
4. Freezing Effects Based on Labeling via Feature Sharing
5. Remaining issues: Freezing Effects in Non-moved Elements
6. Conclusion
References

참고문헌 (43)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0