메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강지원 (광운대학교) 김동욱 (광운대학교) 서영호 (광운대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제24권 제12호
발행연도
2020.12
수록면
1,588 - 1,594 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 심층신경망(deep neural network, DNN)을 이용하여 디지털 홀로그램을 생성하는 신경망의 학습을 위한 데이터 균형 조정 방법에 대하여 논의 한다. 심층신경망은 딥러닝(deep learning, DL) 기술에 기반을 두고 있고, 생성형 적대적 네트워크(generative adversarial network, GAN)계열을 이용한다. 심층 신경망을 통하여 생성 하고자 하는 홀로그램의 기본 단위인 프린지 패턴은 홀로그램 평면과 객체의 위치에 따라 데이터의 형태가 매우 다르다. 하지만 데이터의 분류 기준이 명확하지 않기 때문에 학습 데이터의 불균형이 생길 수 있다. 학습 데이터의 불균형은 곧학습의 불안정 요소로 작용한다. 따라서 분류 기준이 명확하지 않은 데이터를 분류하고 균형을 맞추는 방법을 제시한다. 그리고 이를 통하여 학습이 안정화됨을 보인다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 홀로그램 생성기 학습 안정화 방법
Ⅳ. 실험 결과
Ⅴ. 결론
REFERENCES

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001409216