메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김경엽 (한동대학교) 최군환 (한동대학교) 안경모 (한동대학교)
저널정보
한국해안해양공학회 한국해안·해양공학회논문집 한국해안해양공학회논문집 제32권 제6호
발행연도
2020.12
수록면
553 - 560 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
드론 항공사진을 L*a*b 색공간으로 변환하고 항공사진에서 잘피가 나타난 영역을 분할 및 보정하여 드론항공사진을 이용한 수심측량의 정확도를 향상시켰다. 드론을 이용한 수심측량은 음향측심기와 같은 보편적으로 통용되던 방식에 비해 저비용으로 빠른 시간에 수심자료를 얻을 수 있다. 그러나 수심측량 대상 해역에 잘피가 서식할 경우 해저면의 반사 특성이 일정하지 않아 드론을 이용한 수심측량시 오차가 발생한다. 우리나라에 서식하는 잘피를 비롯한 해조류는 수온이 낮아지기 시작하는 11월부터 자라기 시작하여 1~4월에 최대 밀도를 형성한다. 따라서 해당시기의 드론 항공사진을 그대로 사용할 경우 수심측량의 정확도가 낮아지며, 이는 드론을 이용한 수심측량방식을 상용화하는데 극복해야 할 단점이다. 본 연구에서는 경북 월포해수욕장에서 드론으로 촬영한 고해상도 카메라 이미지를 분석하여 오차 발생해역을 구분하고 보정하는 알고리즘을 개발하였다. 또한, 보정한 드론 항공 사진으로 천해 수심 추정을 수행하여 알고리즘을 검증하였다. 잘피로 인한 오차 보정 알고리즘 적용 전 수심 5m 이내의 200 m × 300 m 해역에서 발생하는 오차 표준편차의 1.5배를 넘는 오차 이상값 비율은 전체 이미지의 8.6%를 차지하였다. 오차 보정 알고리즘을 적용한 결과 오차 이상값의 92%가 제거되었으며, 평균제곱근오차(RMSE)는 33% 감소하였다.

목차

요지
Abstract
1. 서론
2. 이론적 배경
3. L*a*b 색공간 모델을 이용한 오차발생해역 구분
4. 결론
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-454-001411730