메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyeon-Seo Kwak (Kumoh National Institute of Technology) Min-Young Kim (Kumoh National Institute of Technology) Ji-Yong Jeon (Kumoh National Institute of Technology) Eun-Hye Jeong (Kumoh National Institute of Technology) Ju-Yeop Kim (Kumoh National Institute of Technology) So-Dam Hyeon (Kumoh National Institute of Technology) Jin-Woo Jeong (Kumoh National Institute of Technology)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제25권 제3호
발행연도
2021.3
수록면
486 - 489 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, the demand for the use of personal mobility vehicles, such as an electric kickboard, is increasing explosively because of its high portability and usability. However, the number of traffic accidents caused by personal mobility vehicles has also increased rapidly in recent years. To address the issues regarding the driver’s safety, we propose a novel approach that can monitor context information around personal mobility vehicles using deep learning-based object detection and smartphone captured videos. In the proposed framework, a smartphone is attached to a personal mobility device and a front or rear view is recorded to detect an approaching object that may affect the driver’s safety. Through the detection results using YOLOv5 model, we report the preliminary results and validated the feasibility of the proposed approach.

목차

ABSTRACT
Ⅰ. 서론
Ⅱ. 제안 시스템
Ⅲ. 실험 결과
Ⅳ. 결론
REFERENCES

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0