메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최인하 (Namseoul University) 김의명 (Namseoul University)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제39권 제3호
발행연도
2021.6
수록면
133 - 139 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
현재 정밀도로지도 구축 공정은 수작업의 비율이 높아 구축 시간과 비용의 한계가 따른다. 인공지능을 이용하여 정밀도로지도 제작을 자동화하기 위한 연구가 활발하게 진행되고 있으나 정밀도로지도 제작을 위한 학습데이터의 구축 또한 수동으로 이루어지고 있어 학습데이터를 자동으로 구축할 필요성이 있다. 이에 본 연구에서는 모바일매핑시스템으로 취득한 포인트 클라우드를 이용하여 영상으로 변환한 후, 임계치를 이용한 영상 재분류와 중첩 분석 등을 통해 도로 노면표시 영역을 추출하고 추출한 영역의 다각형 유형 분류를 통해 정밀도로지도 제작을 위한 딥러닝 학습데이터를 자동으로 구축하는 방법론을 제안하였다. 제안한 방법론을 통해 구축한 2,764개의 차선 데이터를 딥러닝 기반의 PointNet 모델에 학습한 결과 학습 정확도는 99.977%로 나타났으며, 학습된 모델을 이용하여 3가지 색상 유형의 차선을 예측한 결과 정확도는 99.566%로 나타났다. 따라서, 본 연구에서 제안한 방법론으로 정밀도로지도 구축을 위한 학습데이터를 효율적으로 제작할 수 있는 것을 알 수 있었으며, 도로 노면표시의 정밀도로지도 제작과정 또한 자동화할 수 있을 것으로 사료된다.

목차

Abstract
초록
1. 서론
2. 딥러닝 학습데이터의 자동 구축
3. 딥러닝 학습데이터 활용성 검증
4. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-533-001838993