메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Uwineza Laetitia (University of Science & Technology) Kim Hyun-Goo (Korea Institute of Energy Research) Kim Chang Ki (Korea Institute of Energy Research) Kim Boyoung (Korea Institute of Energy Research) Kim Jin-Young (Korea Institute of Energy Research)
저널정보
한국태양에너지학회 한국태양에너지학회 논문집 한국태양에너지학회 논문집 제41권 제4호
발행연도
2021.8
수록면
115 - 129 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The typical meteorological year (TMY) is a key element in the long-term performance predictions of photovoltaic systems. However, there is a loss of some hourly measured weather data during the formation of the TMY dataset owing to a lack of observations. Therefore, various statistical techniques or satellite observations can be utilized to address this limitation, and these interpolated data may represent some degree of uncertainty that can influence the accuracy of the TMY data. This may in turn affect the long-term planning reliability of the photovoltaic systems. Therefore, a bootstrap method was used in this study to evaluate the accuracy of TMY datasets in the prediction of long-term photovoltaic yields. The electricity production uncertainties obtained through a simulation conducted using this TMY were calculated with a confidence level of 95% for each resulting value as validated based on the long-term average electricity yield. The results show that the bootstrap method provides valid and more useful information than the deterministic approach. Therefore, it is the best method for quantitatively analyzing uncertainty in TMY datasets. The results described herein can serve as a guide for risk management strategies and other business decisions related to solar energy projects. In addition, the results can help planners achieve greater confidence when applying TMY data to feasibility studies.

목차

Abstract
1. Introduction
2. Meteorological Data
3. Methodology
4. Results and Discussion
5. Conclusion
REFERENCES

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0