메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조장훈 (Jeonbuk National University) 방준호 (Jeonbuk National University) 유정훈 (Jeonbuk National University) 선로빈 (Jeonbuk National University) 홍성준 (Electrical Safety Research Institute) 방선배 (Electrical Safety Research Institute)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제70권 제11호
발행연도
2021.11
수록면
1,750 - 1,758 (9page)
DOI
10.5370/KIEE.2021.70.11.1750

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, a new CNN algorithm is proposed to determine the direct cause of electric fires. We create 10,000-15,000 three types of data that can occur at a fire scene in our laboratory, and then train and verify it through the proposed CNN algorithm. As a result of the experiment and analysis, the classification accuracy of the primary and secondary arc beads was 86.2%, the accuracy of arc beads and molten marks was 93.6%. And also, the classification accuracy of the primary and secondary arc beads and molten marks was 92.4%. The results of this study are meaningful in that fire forensics can provide accurate identification results in a shorter time through artificial intelligence algorithms compared to the existing methods of identification through visual classification and physicochemical material analysis methods. In particular, the classification between primary and secondary arc beads is known to be a very difficult problem. However, the results of this study provided more than 86% classification ability.

목차

Abstract
1. 서론
2. 전기화재 정밀감정 분석 방법
3. 딥러닝 CNN을 이용한 용융흔 종류의 판별방법 제안
4. 결론
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-560-002150379