메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Canan Eren Atay (New Jersey Institute of Technology) Georgia Garani (University of Thessaly)
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제26권 제4호
발행연도
2020.1
수록면
303 - 310 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Despite the collection of vast amounts of data by the healthcare sector, effective decision-making in medicalpractice is still challenging. Data warehousing technology can be applied for the collection and management of clinical datafrom various sources to provide meaningful insights for physicians and administrators. Cancer data are extremely complicatedand massive; hence, a clinical data warehouse system can provide insights into prevention, diagnosis and treatmentprocesses through the use of online analytical processing tools for the analysis of multi-dimensional data at different granularitylevels. Methods: In this study, a clinical data warehouse was developed for lung cancer data, which were kindly providedby the United States National Cancer Institute. Lung and ovarian cancer data were imported in specific formats andcleaned to remove errors and redundancies. SQL server integration services (SSIS) were used for the extract-transform-load(ETL) process. Results: The design of the clinical data warehouse responds efficiently to all types of queries by adopting thefact constellation schema model. Various online analytical processing queries can be expressed using the proposed approach. Conclusions: This model succeeded in responding to complex queries, and the analysis of data is facilitated by using onlineanalytical processing cubes and viewing multilevel data details.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0