메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
문길성 (국민연금공단 정보전략실)
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제23권 제3호
발행연도
2021.1
수록면
1,313 - 1,326 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
토픽 모형은 대량의 문서 집합에서 잠재된 주제를 발견하기 위한 비지도학습의 하나이며, 가장 많이 이용되고 있는 모형은 LDA(Latent Dirichlet Allocation)인 것으로 알려져 있다. LDA는 문서 수준에서 단어의 동시 출현 패턴에 기반을 둔 모형이어서 길이가 긴 문서에서는 효과적으로 이용될 수 있으나, 트윗이나 인스턴트 메시지와 같은 길이가 짧은 문서에는 단어의 동시 출현이 희박하고 자주 사용되지 않는 단어의 출현으로 인하여 양질의 주제 추론이 어렵다는 한계가 있다. 이 문제를 개선하기 위한 하나의 대안으로 BTM(Bi-term Topic Model)이 있다. BTM은 bi-term을 사용하여 단어의 동시 발생을 모델링하고, 주제를 찾기 위하여 이러한 단어의 동시 발생 패턴을 bi-term의 말뭉치에서 집계한다. 본 연구의 목적은 LDA와 BTM의 성능을 비교하고 한국어 기반의 텍스트 데이터에서 BTM의 활용 가능성을 검토하는 데 있다. 이를 위하여 토픽의 질을 양적으로 측정할 수 있는 측도들을 검토하고 실제 자료에 적용하여 두 모형을 평가하였다. 평가 결과, 주제 일관성과 문서 분류의 정확성 모두 BTM이 LDA 보다 우수한 것으로 나타났다. 이러한 결과는 단문에서 양질의 토픽을 추출하는 방법으로 BTM의 활용 가능성이 있음을 시사한다.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0