메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
허승 (인천대학교)
저널정보
국제융합경영학회 The Journals of Economics, Marketing & Management 융합경영연구 제9권 제2호
발행연도
2021.1
수록면
33 - 43 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: This study aims to verify sellers’ economic incentives for voluntarily disclosing negative information in online markets and provide practical guidelines to online sellers in terms of whether, when, and how sharing low quality to buyers increase sales. Research design, data and methodology: Our model examines the number of bidders in Internet auctions to measure potential demand and uses count data analysis following previous studies that have also analyzed the number of bidders in auctions. After checking over-dispersion and zero-inflation in our data, we have run a Poisson regression to analyze the effect of sharing negative information on sales. Results: This study presents a counterintuitive result that low-quality sellers can increase their demand by fully disclosing negative information in an online market, if appropriate risk-reducing methods are employed. Our finding thus shows that there exists economic incentive for online sellers to voluntarily disclose negative information about their products, and that the context of transactions may affect this incentive structure as the incentive varies across product categories. Conclusions: As the positive impact of disclosing negative information has rarely been studied so far, this paper contributes to the literature by providing a unique empirical analysis on the impact of sellers’ honesty on sales. By verifying economic incentives of disclosing low quality with actual online sales data, this study suggests practical implications on information disclosure strategy to many online sellers dealing with negative information.

목차

등록된 정보가 없습니다.

참고문헌 (38)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0