메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정민지 (상명대학교) 양희경 (상명대학교) 민경하 (상명대학교)
저널정보
한국컴퓨터게임학회 한국컴퓨터게임학회논문지 한국컴퓨터게임학회논문지 제34권 제2호
발행연도
2021.1
수록면
21 - 26 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We present a framework that improves the performance of deep learning-based object detection model for generated images including game scenes. In particular, we aim to verify that the additional training using images sampled from game scenes can improve the performance of the object detection model, which was pre-trained using photographs. Among the various object detection schemes including Yolo V1, Yolo V2 and SSD, we employ YoloV2 model, which is one of the most widely used deep learning-based object detection model. YoloV2 model is pretrained using diverse photographs. This model is further trained through 160 game scene images sampled from eight different kinds of games. We select the games that range from realistic scenes and highly deformed scenes. We measure IoU (intersection over union) and accuracy using this model. The comparison between our re-trained model and the original model demonstrates the effectiveness of our strategy.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0