메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이윤정 (대구가톨릭대학교)
저널정보
일본어문학회 일본어문학 일본어문학 제80호
발행연도
2018.1
수록면
155 - 180 (26page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this work, we analyze one-month articles about IT in the field of economy extracted from Sankei News. We utilize the tool KH Coder in order to analyze the vocabulary of the articles in terms of parts-of-speech and kinds of words and organize the result in the order of the frequency of word types. This process reveals that the number of word types is 1,964, which enables us to determine the preference order whereby learners study words in the order of frequently attested words. As for the classification of words based on parts-of-speech, the nouns account for 73.3%, the verbs 14.1%, the adjectives 5.9%, the adverbs 5.7%, the interjections 0.2%, the negative auxiliaries 0.2%, and the unknown words 0.2%. As for the classification of words based on kinds of word, the number of target words is 1,716 out of 1,964 word types. The kinds of words in this study consist of native Japanese words, Chinese loan words, non-Chinese loan words, and hybrid words, with native Japanese words being further subdivided into hiragana-words and kanji-words. Chinese loan words being set side, non-Chinese loan words are divided into katakana-words and Romanized-words. Hybrid words are divided into “native Japanese words+Chinese loan words,” “Chinese loan words+native Japanese words,” and “non-Chinese loan words + Chinese loan words.”

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0