메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jin Ho Yang (Hanyang University) Dae Jung Kim (Hanyang University) Chung Choo Chung (Hanyang University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
1,580 - 1,585 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents a methodology to infer the intention to lane change of Surrounding Vehicle (SV) by designing a classifier using a Relevance Vector Machine (RVM). Estimating the intentions precisely of SV is one of the key technologies in autonomous driving. In particular, the lane change of SV is a situation that can be frequently observed while driving, and the behavior of the host vehicle may be affected by the SVs. Therefore, we propose a probabilistic learning-based intention classifier and conduct a performance validation. The training data was reshaped by processing the sensor data acquired from the actual driving and extracting the characteristic points of the maneuver. The verification data was collected on a road not included in the training data. We conducted a comparative experiment with the RAdio Detecting And Ranging (RADAR) signal for the front target and a deterministic classifier called a Support Vector Machine (SVM). Statistically, the proposed RVM-based method succeeded in predicting the lane change of the surrounding vehicle faster than both the RADAR sensor and the SVM. In addition, we observed that correct intention classification was performed through RVM even if SVM misclassified the class set of a lane change by some irregular lateral motion of SV.

목차

Abstract
1. INTRODUCTION
2. BINARY RELEVANCE VECTOR MACHINE
3. DATASET OF SURROUNDING VEHICLE LANE CHANGE
4. EXPERIMENT AND RESULT
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0