메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Pansipansi Leonardo John (Kunsan National University) Hyung Gyun Kim (Kunsan National University) Minseok Jang (Kunsan National University) Yonsik Lee (Kunsan National University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2022 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.13 No.1
발행연도
2022.1
수록면
267 - 275 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Autonomous vehicles are the future transportation system anticipated to be driverless, efficient in handling road curvature and avoiding crashes. The visual perception and accurate localization are two significant points for the autonomous vehicle. This paper leads the approach of fusing multiple RGB cameras for visual objects recognition based on deep learning with convolution neural network, and 3D Light Detection and Ranging (LiDAR) to observe the surrounding environment and match into a 3D world in estimating the distance and position in a form of point cloud map. The goal of perception in multiple cameras is to extract the crucial static and dynamic objects around the autonomous vehicle, especially the blind spot which assists the AV to navigate according to the goal. Numerous cameras with object detection might tend slow-going the computer process in real-time. To eradicate this problem the computer vision convolution neural network algorithm must be suitable also to the capacity of the hardware. The localization of detected objects comes from the bases of a 3D point cloud environment. But first the LiDAR point cloud data undergoes parsing and the algorithm is based on the Euclidean clustering method which gives efficiency on localizing the object. We evaluate the method using our dataset that comes from VLP-16 and multiple web cameras and the results show the efficiency of the method and multi-sensor fusion strategy.

목차

Abstract
I. INTRODUCTION
II. SYSTEM MODEL AND METHODS
III. RESULTS
IV. DISCUSSION AND CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0