메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김상현 (인하대학교) 변창섭 (인하대학교) 이철희 (인하대학교)
저널정보
한국트라이볼로지학회 Tribology and Lubricants Tribology and Lubricants 제38권 제1호
발행연도
2022.2
수록면
27 - 31 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Harmonic drives have attracted increasing attention with the development of materials, parts, and related equipment. Harmonic drives exhibit high deceleration, high accuracy, and light weight. The stiffness of flexible splines according to the radial load is studied using a commercial FEM program to design the structure of the flexible spline and finite element to improve the weight and price competitiveness of harmonic drives. In addition, several studies have measured and compared friction coefficients based on 3D printed tread patterns. However, owing to the characteristics of plastic materials, a decrease in stiffness in the radial direction is inevitable. To prevent a decrease in stiffness in the radial direction, we designed and manufactured flex splines with a wrinkle shape. Through structural analysis, the reaction force and stiffness in the radial direction were determined. In addition, the maximum angle of the mound was derived by theoretical calculations, and the performance of the harmonic drive was compared with the results obtained in the mound experiment. Structural analysis shows that the shape of wrinkles decreased the stress and reaction force and increased the safety factor in comparison with that of the circular shape. During performance verification through continuous experiments, the developed harmonic drive showed continuous performance similar to that of an actual tank model. It is expected that the flex spline with a compliant spring and wrinkle shape will prevent a decrease in the radial stiffness.

목차

Abstract
1. 서론
2. 연구 방법 및 내용
3. 등판성능 실험
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-551-001099587