메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김상준 (서울과학기술대학교) 최진원 (서울과학기술대학교) 김도영 (서울과학기술대학교) 박구만 (서울과학기술대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제27권 제2호
발행연도
2022.3
수록면
185 - 197 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 객체 인식에 높은 성능을 가진 딥러닝 네트워크가 나오고 있다. 딥러닝을 이용한 객체 인식의 경우 성능 향상을 위해 학습 데이터 셋 구축이 중요하다. 데이터 셋을 구축하기 위해서는 이미지를 수집하고 라벨링 해야 한다. 이 과정은 많은 시간과 인력이 필요하다. 때문에 오픈 데이터 셋을 사용한다. 그러나 방대한 오픈 데이터 셋을 가지고 있지 않는 객체도 존재한다. 그 중 하나가 번호판 검출과 인식에 필요한 데이터이다. 이에 본 논문에서는 이미지를 최소화 하여 대용량 데이터 셋을 만들 수 있는 인조 번호판 생성기 시스템을 제안한다. 또한 인조 번호판 배치구조에 따른 검출률을 분석했다. 분석결과 가장 좋은 배치구조는 FVC_III, B이며 가장 적합한 네트워크는 D2Det이었다. 인조 데이터셋 성능은 실제 데이터셋의 성능보다 2~3%가 낮았지만, 인조 데이터를 구축하는 시간이 실제 데이터셋을 구축하는 시간보다 약 11배 빨라 시간적으로 효율적인 데이터 셋 구축 시스템임을 증명하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 인조 번호판 데이터 생성 시스템
Ⅳ. 실험 결과
Ⅴ. 결론
참고문헌 (References)

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0