메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유양우 (Ulsan College) 김성혁 (Sahmyook University) 김현규 (Sahmyook University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제5호(통권 제218호)
발행연도
2022.5
수록면
117 - 125 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 여행에 대한 관심이 높아지면서, 번거로운 여행 일정을 대신 수립해주는 여행 일정 추천 서비스에 대한 연구가 활발히 진행되고 있다. 여행 일정 추천에 있어 가장 중요하면서도 공통적으로 제시되는 목표는 여행 목적지 근처의 인기 관광지를 포함한 최단 거리 여행 경로를 제공하는 것이다. 다수의 기존 연구에서는 개인 맞춤형 스케줄 제공에 초점을 맞추었으며, 사용자의 여행 이동 경로 이력이나 SNS 리뷰가 존재하지 않을 경우 설문 조사가 필요한 문제점이 있었다. 또한 최단 거리를 계산할 때 발생할 수 있는 현실적인 문제점도 명확히 지적되지 않았다. 이와 관련하여, 본 논문에서는 소셜 빅데이터를 활용하여 인기 관광지를 알아내기 위한 정량화된 방법을 소개하고, 최단 거리 알고리즘 적용시 발생할 수 있는 문제점과 이를 해결하기 위한 휴리스틱 알고리즘을 함께 제시한다. 제안 방법을 검증하기 위해, 경상남도를 대상으로 63,000여 개의 플레이스 정보를 수집하고 빅데이터 분석을 수행했으며, 실험을 통해 제안한 휴리스틱 스케줄링 알고리즘이 실제 데이터 상에서 실시간 처리가 가능함을 확인하였다.

목차

Abstract
요약
Ⅰ. Introduction
Ⅱ. Related Work
Ⅲ. Proposed Method
Ⅳ. Experimental Results
Ⅴ. Conclusion and Future Work
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0