메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
YuTong Sun (Qingdao University of Science and Technology) Jae Woong Kim (Chung-Ang University)
저널정보
중앙대학교 영상콘텐츠융합연구소 TECHART: Journal of Arts and Imaging Science TECHART: Journal of Arts and Imaging Science Vol.9 No.3
발행연도
2022.10
수록면
29 - 35 (7page)
DOI
10.15323/techart.2022.10.9.3.29

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the 21st century, convenience entered the life of Chinese people. Every morning they wake up, asking "Xiao Ai classmate" (how is the weather today?) or "T-mall elf" (What should I wear?); when traveling and driving, they often use intelligent navigation; use smart bracelets for sports and fitness; and learn online. These are possible because of the advances in artificial intelligence (AI) technology. Over the years, the technological advancements have significantly enhanced the various teaching and learning methods. The appearance of words allowed information and knowledge to be disseminated effectively between generations, but it failed to give different groups equal access to information. The large-scale use of printing as the carrier of words accelerated the transmission of information and made it possible for most people to receive education, and ushered in the era of standardized education. Currently, AI education of primary and middle school students is particularly important. How far have overseas schools achieved in AI education for primary and secondary school students? How should AI education be repositioned in China? Let us make a deep observation.

목차

Abstract
1. Artificial Intelligence (AI) development status and policy in China
2. Status of AI education in China and abroad
3. AI teaching materials and educational content
4. Nature of the curriculum and new educational methods
5. Shortcomings and Suggestions for AI Education in China
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0