메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Junwei Rong (Tongji University) Kostas Terzidis (Tongji University) Junfeng Ding (Tongji University)
저널정보
한국디자인학회 Archives of Design Research Archives of Design Research Vol.37 No.3 (Wn.151)
발행연도
2024.7
수록면
119 - 133 (15page)
DOI
10.15187/adr.2024.07.37.3.119

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Background : Artificial intelligence (AI) developments will change the way humans think about problems. Recent advances in design education have been significant in both the technology and applications of AI and related generative AI. Often, AI education for children is centered on technical education, such as robotics or programming. However, few programs combine AI, technology, creativity, philosophy, and logical reasoning to leverage design expertise. We explore this combination to allow students to creatively use AI to design and think. This paper reports on our vision, curriculum framework, and learning activities, with a focus on proposing a new framework for thinking with AI for Kids, the KAI Thinking Model(KAIT), and exploring its impact on student creativity.
Methods : To illustrate the practical application of the KAIT model, we briefly presented two cases of AI thinking programs conducted among Chinese primary and secondary school students. We also used interviews to understand the students" attitudes toward the course content.
Results : Students believed that the novelty and uniqueness of the content can help them think outside the box.
Conclusions : We hope to provide a new vision of how design in the age of artificial intelligence can serve as a new medium for influencing and facilitating the growth of students as creators of the future.

목차

Abstract
1. Introduction
2. Related Work
3. Method
4. Workshop Course Outcomes: Two Design Cases
5. Discussion
6. Conclusion and Future Work
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0