메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Takuma Okubo (Keio University) Masaki Takahashi (Keio University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
1,088 - 1,093 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Lately, there has been a need to improve the efficiency of material movements within factories and multi-agents are required to perform these tasks. In this study, graphical representation and mixed-integer programming have been adopted for simultaneous optimization of task allocation and path planning for each agent to achieve the following three goals. First, this study realizes time and capacity constrained multi-agent pickup and delivery (TCMAPD) that simultaneously considers time constraints, capacity constraints, and collision avoidance. Previous studies have not considered these constraints simultaneously. Thus, we can solve the problems associated with using multi-agents in actual factories. Second, we achieved TCMAPD that optimizes the collision avoidance between multi-agents. In conventional research, only a single collision avoidance method can be used. However, an appropriate route was selected from a variety of avoidance methods in this study. Hence, we could achieve a more efficient task allocation and path planning with collision avoidance. Third, the proposed method simultaneously optimizes task allocation and path planning for each agent. Previous studies have separately considered the approach of optimizing task allocation and path planning or used the cost of path planning after task allocation to again perform task allocation and path planning. To simultaneously optimize them in a single plan, we have developed a solution-derivable formulation using mixed-integer programming to derive a globally optimal solution. This enables efficient planning with a reduced total time traveled by the agents.

목차

Abstract
1. INTRODUCTION
2. RELATED WORK
3. GRAPHICAL REPRESENTATION
4. MIXED-INTEGER PROGRAMMING
5. SIMULATION
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0