메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Truong-Dong Do (Sejong University) Nguyen Xuan-Mung (Sejong University) Ngoc-Phi Nguyen (Sejong University) Ji-Won Lee (Korea Institute of Robotics and Technology Convergence) Yong-Seok Lee (Sejong University) Seok-Tae Lee (Sejong University) Sung-Kyung Hong (Sejong University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
1,565 - 1,571 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Nano Aerial Vehicles have become widely used for a variety of complex missions due to their mobility and the ability to access hard-to-reach areas. In most cases, these tasks require the vehicles to land on ground targets or perch on platforms mounted on diverse surfaces. Considering the surface the vehicle will reach, controlling perching is obviously a challenging task. Besides, the reliability of target position and direction estimation has a significant impact on perching performance. In this paper, a multi-sensor-based target pose estimation for autonomous precision perching of nano drones is proposed. First, the perching target, a cube cage containing a small marker inside a larger one, is designed to enhance pose estimation capability at a wide range of distances. Second, we constructed a nano drone with an upward monocular camera and a 5-direction multi-ranger deck. Next, the flying vehicle’s pose toward the perching target is calculated, followed by a Kalman filter for filtering and estimating the missing data. Finally, we introduced an algorithm to merge the pose data from multiple sensors when drones approach close to the target. Real measurements are conducted on the testbed. The experimental results demonstrated the utility and potential of the adopted approach with millimeter-level precision.

목차

Abstract
1. INTRODUCTION
2. METHODOLOGY
3. EXPERIMENTS
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0