메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sangwoo Jeong (HL Mando) Daesung Kim (HL Mando) Jonghyun Pyo (HL Mando) Jinhwan Lee (HL Mando)
저널정보
한국자동차공학회 한국자동차공학회 추계학술대회 및 전시회 2022년 한국자동차공학회 추계학술대회 및 전시회
발행연도
2022.11
수록면
551 - 556 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The redundant system serves to increase the robustness against failure by operating the two or multiple identical systems simultaneously. In particular, it became one of the widely applied method to increase functional safety in the automobile industry as automobiles are being changed from mechanical to electronic. However, even two identical systems or sensors are used simultaneously, it can be known that a failure has occurred when the two output values are different, but there is a limitation in that it is difficult to determine which of the two is the result of normal operation. This limitation results in degrading overall system performance or even suspend the system operation. To solve this problem, a method using three or more identical systems is also used, but it is disadvantageous in terms of cost and system complexity. The research objective of this paper is to maintain the steering assistance performance of Electronic Power Steering system using the two steering angle sensors by determining which sensor is operating normally when one sensor has faults. In this paper, a normally operating sensor is determined using the steering angle estimated by bicycle model based Extended Kalman Filter. In addition, a fault determination algorithm was applied to increase the robustness for the estimation result. The performance of the proposed algorithm is shown in experimental result that steering assistance can be maintained in case of one of the two sensor has abnormal operation.

목차

Abstract
1. INTRODUCTION
2. METHODOLOGIES
3. EXPERIMENTAL RESULTS
4. CONCLUSION
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0