메뉴 건너뛰기
Library Notice
Institutional Access
If you certify, you can access the articles for free.
Check out your institutions.
ex)Hankuk University, Nuri Motors
Log in Register Help KOR
Subject

Understanding Travel Behavior Change during COVID-19 Using Spatio-temporal Cluster Analysis
Recommendations
Search
Questions

논문 기본 정보

Type
Academic journal
Author
Choi, Moongi (University of Utah) Hwang, Chul Sue (Kyung Hee University)
Journal
Korea Society of Surveying, Geodesy, Photogrammetry, and Cartography Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography Vol.41 No.1 KCI Accredited Journals SCOPUS
Published
2023.2
Pages
1 - 12 (12page)
DOI
10.7848/ksgpc.2023.41.1.1

Usage

cover
📌
Topic
COVID-19 동안 여행 행동 변화를 이해하기 위해 시공간 클러스터 분석을 이용한 연구.
📖
Background
COVID-19의 확산 모니터링과 예측에 대한 연구는 있었으나, 전염병 동안 변화하는 여행 행동 패턴을 포함한 예측 모델에 대한 연구는 부족하였다.
🔬
Method
K-means++ 및 Gaussian 혼합 모델(GMM), 회고적 SatScan을 사용하여 COVID-19 팬데믹 동안 CBG(인구 조사 블록 그룹) 규모에서 시공간 여행 패턴 및 행동 변화를 식별하였다.
🏆
Result
연구 결과 K-means++이 여행 행동의 일일 변화에 잘 부합하며, 회고적 SatScan은 넓은 공간에서 여행 행동 변화를 감지하는 장점이 있음을 보였다.
Understanding Travel Behavior Change during COVID-19 Using Spatio-temporal Cluster Analysis
Ask AI
Recommendations
Search
Questions

Abstract· Keywords

Report Errors
As COVID-19 has been prevalent around the world in recent years, many studies about monitoring and predicting the spread of disease have been conducted in various fields including geography. However, little research has been devoted to infectious disease prediction modeling that adopts constantly changing travel behavior patterns during epidemics. This is due to the limited methodologies to investigate spatio-temporal change in travel behaviors at large-scale and the difficulty in interpreting massive and diverse travel patterns. This study suggests an effective disease surveillance method based on cluster analysis to identify change in travel behaviors during the pandemic by implementing space-time cluster analysis. The results show that K-means++ well represent dynamic changes in travel behaviors at daily scale, whereas retrospective space-time scan statistics have the advantage of detecting travel behavior changes in each period at large spatial scale. Those results could inform decision makers to establish guidelines on travel behavior to curb individual contacts under potential future pandemic.

AI Summary

Topic

COVID-19 동안 여행 행동 변화를 이해하기 위해 시공간 클러스터 분석을 이용한 연구.

Background

COVID-19의 확산 모니터링과 예측에 대한 연구는 있었으나, 전염병 동안 변화하는 여행 행동 패턴을 포함한 예측 모델에 대한 연구는 부족하였다.

Method

K-means++ 및 Gaussian 혼합 모델(GMM), 회고적 SatScan을 사용하여 COVID-19 팬데믹 동안 CBG(인구 조사 블록 그룹) 규모에서 시공간 여행 패턴 및 행동 변화를 식별하였다.

Result

연구 결과 K-means++이 여행 행동의 일일 변화에 잘 부합하며, 회고적 SatScan은 넓은 공간에서 여행 행동 변화를 감지하는 장점이 있음을 보였다.

주요내용

Contents

Abstract
1. Introduction
2. Methodology
3. Cluster analysis
4. Discussion and Conclusion
References

References (58)

Add References

Recommendations

It is an article recommended by DBpia according to the article similarity. Check out the related articles!

Related Authors

Recently viewed articles

Comments(0)

0

Write first comments.

UCI(KEPA) : I410-ECN-0101-2023-533-000425565