메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
조영환 (서울대학교 교육학과) 한예진 (서울대학교) Florence Martin (North Carolina State University)
저널정보
한국교육정보미디어학회 교육정보미디어연구 교육정보미디어연구 제28권 제4호
발행연도
2022.12
수록면
903 - 927 (25page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Learning analytics has been effectively used to predict learning performance in online learning environments. On the basis of prediction results, instructors and administrators have made efforts to improve the quality of higher education. However, there is a concern that learning analytics does not guarantee the improvement of teaching and learning activities without an in-depth understanding of educational theory and practice. This study aims to review previous studies on predictive learning analytics (PLA) using online learning engagement data in higher education so as to explore the future direction of PLA. A total of 94 papers, published from 2011 to 2020, were reviewed in regard to (a) research trends, (b) types of online learning engagement, and (c) educational implications. The research on predictive learning analytics has increased rapidly, using the data collected from online learning environments. Nevertheless, there was lack of research analyzing online learning activities across different domains, which might limit a prediction model’s generalizability. In addition, PLA frequently used behavioral, cognitive, and social engagement data to predict learning performance, but not emotional engagement data. There were also limitations in giving prescriptive implications to educational stakeholders based on PLA results, although many studies focused on the accuracy of prediction. These findings imply that interdisciplinary research is necessary not only to predict learning performance accurately but also to interpret and use PLA results for the improvement of higher education.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0