메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
강승원 (University of Tsukuba)
저널정보
한국화훼학회 화훼연구 화훼연구 제29권 제4호
발행연도
2021.12
수록면
213 - 222 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Volatile organic compounds (VOCs) in plants are various organic compounds with small molecular weight and high vapor pressure. The metabolomics approach was recently introduced to analyze VOCs involved in biological processes, such as abiotic and biotic stresses, spatial and temporal distribution, and genotypic differences. In addition, this approach is widely used in combination with identification of VOCs analysis and statistical analysis using multivariate analysis, such as principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), hierarchical cluster analysis (HCA), etc. First, in this review, the current condition of the metabolomics approach to analyze VOCs synthesized in plants using head space-solid phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) is discussed. In addition, metabolomics approach, such as extraction and analysis of VOCs using HS-SPME-GC-MS, conversion, and processing of mass spectral (MS) data, a database for VOCs identification, useful statistical methods, and statistical tools and applications, are explained. Finally, multi-omics in combination with other omics techniques, such as genomics, transcriptomics, etc. are suggested as prospects of a metabolomics approach for VOC analysis in floricultural plants using HS-SPMEGC- MS. Therefore, the metabolomics approach of HS-SPMEGC- MS will facilitate our understanding of VOCs synthesized in plants. Furthermore, the multi-omics approach will help understand gene functions involved in the biosynthesis of VOCs and help develop new development cultivars with nicer floral scents by contributing to the development of the floricultural industry.

목차

등록된 정보가 없습니다.

참고문헌 (61)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0