메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이준협 (고려대학교) 박기홍 (고려대학교) 은준엽 (고려대학교)
저널정보
한국로지스틱스학회 로지스틱스연구 로지스틱스연구 제29권 제4호
발행연도
2021.8
수록면
25 - 34 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Casting is a method of making metal through molds by changing solid metal into liquid state, which has the advantageof being able to yield a large number of products with complex shapes. Owing to the advantage, it is widely used tomanufacture jewelry, artwork, surgical implants, and impellers in automobiles and ships. However, low quality productscan be produced due to pinholes, sand blows, shrinkage cavities, and cracks that are well-known issues in casting. Especially using a defective impeller, a rotating element of a centrifugal pump that accelerates fluid outside from thecenter and transfers the power of fluid kinetic energy, causes a significant damage to its pump and/or workers nearby dueto its high pressure. Therefore, foundries endeavor to catch any defectives before sending them out to purchasers. However, foundries are usually small or medium-sized enterprises. It is difficult for them to hire additional experiencedworkers to catch more defectives or install photographing and imaging-storing devices to keep track of a large amountof product images for analyses. The foundries usually have a few inspectors to catch defective products and, due to ashortage of manpower and human inaccuracy, defective products are often classified as non-defective products. Thisstudy shows that a combination of classic augmentation and self-attention generative adversarial network improves theaccuracy of classifying non-defective and defective impellers by augmenting a limited amount of image data that can beeven manually photographed. Combining classic augmentation and self-attention generative adversarial networkoutperforms the sole use of classic augmentation in generating quality images for convolutional neural network.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0