메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정용주 (계명대학교)
저널정보
한국전자통신학회 한국전자통신학회 논문지 한국전자통신학회 논문지 제12권 제3호
발행연도
2017.6
수록면
485 - 492 (7page)
DOI
http://dx.doi.org/10.13067/JKIECS.2017.12.3.485

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
GMM(Gaussan Mixture Model)은 비명 소리를 검출하기 위해서 가장 많이 사용되는 기법의 하나이다. 기존의 GMM 방식에서는 전체 훈련데이터를 비명소리와 비-비명 소리로 나누고, 훈련과정을 통하여 각각의 GMM 모델을 생성하게 된다. 그러나 본 연구에서는 비명 소리 검출 과정이 화자인식과 매우 유사하다는 점에 착안하여 화자인식에서 매우 효과적으로 사용된 UBM(Universial Background Model) 방식을 비명소리 검출에 적용할 것을 제안하였다. 제안된 UBM 방식을 통한 검출 실험 결과 기존의 GMM 방식에 비하여 더 나은 검출 성능을 보임을 인식 실험을 통하여 확인 할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0