메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김회남 (한남대학교) 윤영선 (한남대학교)
저널정보
한국소프트웨어감정평가학회 한국소프트웨어감정평가학회논문지 한국소프트웨어감정평가학회 논문지 제17권 제2호
발행연도
2021.12
수록면
47 - 57 (11page)
DOI
10.29056/jsav.2021.12.06

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
뉴로모픽 기술은 인간의 뇌 구조와 연산과정을 하드웨어로 모방하는 기술로 기존 인공지능 기술의 단점을보완하기 위하여 제안되었다. 뉴로모픽 하드웨어 기반의 IoT 응용을 개발하기 위해 NA-IDE가 제안되었으며, NA-IDE에서 SNN 모델을 구현하기 위하여 일반적으로 많이 사용되는 입력 데이터를 SNN모델에 사용할 수있도록 변환이 필요하다. 본 논문에서는 이미지 데이터를 SNN 입력으로 사용하기 위하여 스파이크 시계열패턴으로 변환하는 신경코딩 방식의 인코더 컴포넌트를 구현하였다. 디코더 컴포넌트는 SNN 모델이 스파이크 시계열 패턴을 생성하는 경우, 출력된 시계열 데이터를 다시 이미지 데이터로 변환하도록 구현하였다. 디코더 컴포넌트는 출력 데이터에 인코딩 과정과 동일한 매개변수를 사용한 경우, 원본 데이터와 유사한 정적데이터를 얻을 수 있었다. 제안된 인코더와 디코더를 사용한다면 image-to-image나 speech-to-speech와 같이입력 데이터를 변환하여 재생성하는 분야에 사용할 수 있을 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0