메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hassan Amer Algaifi (Universiti Tun Hussein Onn Malaysia) Suhaimi Abu Bakar (Universiti Teknologi Malaysia) Rayed Alyousef (Prince Sattam Bin Abdulaziz University) Abdul Rahman Mohd. Sam (Universiti Teknologi Malaysia) Ali S. Alqarni (King Saud University) M.H. Wan Ibrahim (Universiti Tun Hussein Onn Malaysia) Shahiron Shahidan (Universiti Tun Hussein Onn Malaysia) Mohammed Ibrahim (King Fahd University of Petroleum and Minerals) Babatunde Abiodun Salami (King Fahd University of Petroleum and Minerals)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.28 No.4
발행연도
2021.10
수록면
535 - 551 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In recent years, bacteria-based self-healing concrete has been widely exploited to improve the compressive strength of concrete using different bacterial species. However, both the identification of the optimal involved reaction parameters and theoretical framework information are still limited. In the present study, both experimentally and numerical modelling using machine learning (ANN and ANFIS) and response surface methodology (RSM) were implemented to evaluate and optimse the evolution of bacterial concrete strength. Therefore, a total of 58 compressive strength tests of the concrete incorporating new bacterial species were designed using different concentrations of urea, cells concentration, calcium, nutrient and time. Based on the results, the compressive strength of the bacterial concrete improved by 16% due to the decrement of the pore percentage in the concrete skin; specifically, 5 mm from the concrete surface, compared to that of the control concrete. In the same context, both machine the learning and RSM models indicated that the optimal range of urea, calcium, nutrient and bacterial cells were (18-23 g/L), (150-350 mM), (1-3 g/L) and 2×107 cells/mL, respectively. Based on the statistical analysis, RMSE, <i>R</i><sup>2</sup>, MPE, RAE and RRSE were (0.793, 0.785), (0.985, 0.986), (1.508, 1.1), (0.11, 0.09) and (0.121, 0.12) from both the ANN and ANFIS models, respectively, while; the following values (0.839, 0.972, 1.678, 0.131 and 0.165) was obtained from RSM model, respectively. As such, it can be concluded that a high correlation and minimum error were obtained, however, machine learning models provided more accurate results compared to that of the RSM model.

목차

등록된 정보가 없습니다.

참고문헌 (71)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0