메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정서영 (광운대학교) 손채봉 (광운대학교) 유정호 (광운대학교)
저널정보
한국퍼실리티매니지먼트학회 한국퍼실리티매니지먼트학회지 한국퍼실리티매니지먼트학회지 제16권 제2호
발행연도
2021.12
수록면
43 - 51 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Since the depth of concrete cracks is important information for evaluating the safety of facilities, a technology capable of accurately and quickly measuring the depth of cracks is needed. However, in the facility maintenance practice, the crack depth is measured through non-destructive testing using ultrasonic equipment. This method has the disadvantage of poor efficiency. Such limitations of existing technologies can be solved through the development of image-based crack depth measurement technology. This is because if the crack depth measurement is based on an image, restrictions on the timing and location of the inspection can be resolved. In order for such image-based crack depth measurement technology to be developed, identification of image characteristic variables related to crack depth must precede. Therefore, the purpose of this study was to identify image characteristic variables meaningful to the crack depth. In order to achieve the purpose of the study, we collected 100 actual cases of cracking, measured the crack depth, and took an image. In addition, we created a dataset by extracting image characteristic variables such as hue, luminance, and brightness from the captured image through image processing technology. Using the thus-produced dataset, we conducted statistical analysis to identify significant image characteristic variables for crack depth estimation.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0