메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김식 (세명대학교) 김정환 (세명대학교)
저널정보
대한임베디드공학회 대한임베디드공학회논문지 대한임베디드공학회논문지 제12권 제4호
발행연도
2017.8
수록면
247 - 258 (12page)
DOI
http://dx.doi.org/10.14372/IEMEK.2017.12.4.247

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Since 2016 when the regulations related to vehicle structure and device modification were drastically revised, the car tuning market has been growing rapidly. Particularly, many drivers are showing interest in changing the interior and exterior according to their preference, or improving the specifications of their cars by changing the engine and powertrain, among others. Also, as the initial engine settings such as horse power and torque of the vehicle are made for stable driving of the vehicle, it is possible to change the engine performance, via Engine Control Unit (ECU) mapping, to the driver’s preference. However, traditionally, ECU mapping could be only performed by professional car engineers and the settings were also decided by them. Therefore, this study proposed a system that collects data related to the driver’s driving habits for a certain period and sends them to a cloud server in order to analyze them and recommend ECU mapping values. The traditional mapping method only aimed to improve the car’s performance and, therefore, if the changes were not compatible with the driver’s driving habits, could cause problems such as incomplete combustion or low fuel efficiency. However, the proposed system allows drivers to set legally permitted ECU mapping based on analysis of their driving habits, and, therefore, different drivers can set it differently according to the vehicle specifications and driving habits. As a result, the system can optimize the car performance by improving output, fuel efficiency, etc. within the range that is legally permitted.

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0