메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김준호 (공군사관학교) 채건주 (공군사관학교) 박재민 (공군사관학교) 박경원 (공군사관학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제29권 제1호
발행연도
2023.3
수록면
107 - 119 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
군인의 동작 및 운동 상태를 인식하는 기술은 웨어러블 테크놀로지와 인공지능의 결합으로 최근 대두되어 병력 관리의 패러다임을 바꿀 기술로 주목받고 있다. 이때 훈련 상황에서의 평가 및 솔루션 제공, 전투 상황에서의 효율적 모니터링 기능을 의도한대로 제공하기 위해서는 상태 판별의 정확도가 매우 높은 수준으로 유지되어야만 한다. 하지만 입력 데이터가 시계열 또는 시퀀스로 주어지는 경우, 기존의 피드포워드 신경망으로는 분류 성능을 극대화하는데 한계가 발생한다. 전장에서의 군사 동작 인식을 위해 다뤄지는 인간의 행동양식 데이터(3축 가속도 및 3축 각속도)는 시의존적 특성의 분석이 요구되기 때문에, 본 논문은 순환 신경망인 LSTM(Long-short Term Memory) 네트워크를 활용하여 취득 데이터의 이동 양상 및 순서 의존성을 파악하고 여덟 가지의 대표적 군사 동작(Sitting, Standing, Walking, Running, Ascending, Descending, Low Crawl, High Crawl)을 분류하는 고성능 인공지능 모델을 제안한다. 이때, 학습 조건 및 모델 변수는 그 정확도에 결정적인 영향을 끼치지만 인간의 수동적 조정이 필요해 비용 비효율적이고 최적의 값을 보장하지 못한다. 본 논문은 기계 스스로 일반화 성능이 극대화된 조건들을 취득할 수 있도록 베이지안 최적화를 활용해 하이퍼파라미터를 최적화한다. 그 결과, 최종 아키텍쳐는 학습 가능한 파라미터의 개수가 유사한 기존의 인공 신경망과 비교해서 오차율이 62.56% 감소할 수 있었으며, 최종적으로 98.39%의 정확도로 군사 동작 인식 기능을 구현할 수 있었다.

목차

1. 서론
2. 연구 개요 : Opt-FCN 및 Opt-LSTM의 활용
3. 인공지능을 활용한 군사 동작 인식 알고리즘
4. 실험 결과
5. 결론
참고문헌(References)
Abstract

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0