메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yuichiro Kobayashi (Toyo University) Mariko Abe (Chuo University)
저널정보
범태평양응용언어학회 Journal of Pan-Pacific Association of Applied Linguistics Journal of Pan-Pacific Association of Applied Linguistics 제20권 제1호
발행연도
2016.7
수록면
55 - 73 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The purpose of the present study is to assess second language (L2) spoken English using automated scoring techniques. Automated scoring aims to classify a large set of learners’ oral performance data into a small number of discrete oral proficiency levels. In automated scoring, objectively measurable features such as the frequencies of lexical and grammatical items are generally used as “exploratory variables” to predict oral proficiency levels, any of which can be used as a “criterion variable” in this study. We have chosen the NICT JLE Corpus, a corpus of 1,281 Japanese EFL learners’ speech productions coded into nine oral proficiency levels (Izumi, Uchimoto, & Isahara, 2004). The nine oral proficiency levels were used as the criterion variables and linguistic features analyzed in Biber (1988) as explanatory variables. We employed random forests (Breiman, 2001), a powerful method for text classification and feature extraction, to predict oral proficiency. As a result of random forests with the out-of-bag error estimate, 60.11% of the productions were correctly classified. Compared to the baseline accuracy of the simplest possible algorithm of always choosing the most frequent level (37.63%), our random forests model improved prediction by 22.48 points. The Pearson product-moment correlation coefficient with human scoring was 0.85. Predictors that showed a clear discrimination of oral proficiency levels were tokens, types, and the frequency of nouns in the order of strength.

목차

등록된 정보가 없습니다.

참고문헌 (55)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0