메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박인호 (부경대학교) 김수진 (국민건강보험공단)
저널정보
한국통계학회 응용통계연구 응용통계연구 제34권 제3호
발행연도
2021.6
수록면
427 - 438 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이단추출은 개체와 집락 단수준별 모집단 특성을 함께 추정할 수 있게 해준다. 단위수준별 보조정보가 함께 주어질 때, 단위수준별 정보 및 가중치 구성을 통합적으로 고려한 칼리브레이션 가중치를 산출한다면 단위수준별 특성은 물론 수준간의 다변량적 특성도 적절히 반영할 수 있을 것이다. 본 연구는 Estevao와 Särndal (2006)과 Kim (2019) 이 고려한 통합 칼리브레이션 가중치 산출 방법에 대해 살펴보았다. 간단한 모의실험을 통해 기존의 통합 칼리브레이션 가중치 산출방법의 효율성을 비교하였다. 이 중 복합보조정보를 개체화한 후 단일단계의 칼리브리이션 조정으로 가중치를 산출하되 집락가중치가 집락 내 개체가중치 평균이 되도록 정의하는 방법과 단위수준별 보조정보를 이용한 수준별 칼리브레이션 조정을 상호 반복적으로 수행하되 집락가중치가 집락 내 개체가중도치 평균이 되도록 하는 방법이 조정전 가중치의 변동량을 크게 늘리지 않고도 수준간 다변량적 특성을 잘 반영할 수 있음을 확인할 수 있었다. 집락과 개체의 상호간 보조정보에 대한 총합추정의 적합도 측면에서 매우 양호하였고, 칼리브레이션 조정에 포함되지 않는 조사특성들의 총합추정에 대한 상대편향 및 상대 평균 제곱근 오차가 작게 나타났다.

목차

Abstract
1. 서론
2. 이단추출을 위한 칼리브레이션 추정
3. 통합가중치 산출방안
4. 모의실험
5. 논의
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0