메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
권오익 (한일엠이씨) 김영일 (서울과학기술대학교)
저널정보
대한건축학회 대한건축학회논문집 大韓建築學會論文集 第39卷 第5號(通卷 第415號)
발행연도
2023.5
수록면
133 - 140 (8page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
To prepare basic data for the use of machine learning in the building energy field, this study examined the characteristics of each model and compared the prediction performance, calculation efficiency and output result aspects of the machine learning model according to the input parameters. Outdoor temperature was used as a basic input to consider input differences for six machine learning models, MLR, SVM, GPR, ANN, DNN and DT, which are mainly used in the building energy field, and the building energy consumption was predicted and compared depending on whether the indoor temperature was additionally reflected. The predictive performance of most models improved when the outdoor temperature and the indoor temperature were reflected as inputs rather than when the outdoor temperature was reflected as an input in the influence of the input parameters. In the comparison of the predictive performance of the model, DNN(5-Layer) showed the most dominant predictive results with RMSE, MSE, MAE, and R2 (0.190, 0.036, 0.139, 0.88). Next, ANN showed predictive performance of RMSE, MSE, MAE, R2 (0.203, 0.041, 0.142, 0.86), and GPR provided efficient prediction with RMSE, MSE, MAE, R2 (0.211, 0.044, 0.150, 0.85). DNN and ANN improved their prediction performance as the number of hidden layers increased, but the training time increased from 4.8 seconds to 16.5 seconds. In terms of computational efficiency considering training time, MLR showed the best result with 1.4s. As a result, DNN showed 14% better predictive performance than MLR, and MLR were trained 11.8 times faster than DNN. With indoor temperature being further reflected as input parameters, most models better represent actual building energy consumption in aspects of the forecast results. Machine learning model selection should be reviewed not only for predictive performance for errors but also for calculation cost and the discernment provided by predictive results. Since this study was conducted on a single building, research on the selection and development of models with high reproducibility in various models based on big data in terms of utilization should be continued.

목차

Abstract
1. 서론
2. 기계학습 모델
3. 건물에너지 소비 예측
4. 분석결과
5. 결론
REFERENCES

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-540-001567138