메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강신정 (이화여자대학교) 양대헌 (이화여자대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제33권 제3호
발행연도
2023.6
수록면
427 - 435 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
카디널리티 추정은 실생활의 많은 곳에서 사용되며, 큰 범위의 데이터를 처리하는 데 근본적 문제이다. 인터넷이 빅데이터의 시대로 넘어가며 데이터의 크기는 점점 커지고 있지만, 작은 온칩 캐시 메모리만을 이용하여 카디널리티 추정이 이뤄진다. 메모리를 효율적으로 사용하기 위해서, 지금까지 많은 방법이 제안되었다. 그러나, 이러한 알고리즘에서는 estimator 간의 노이즈 발생으로 인해 정확도가 떨어지는 일이 발생한다. 이 논문에서는 노이즈를 최소화하는데 중점을 뒀다. 우리는 여러 개의 데이터 구조를 제안하여 각 estimator가 데이터 구조 수만큼의 추정값을 가지고, 이 중 가장 작은 값을 선택하여 노이즈를 최소화한다. 실험을 통해 이 방법이 이전의 가장 좋은 방법과 비교했을 때, 플로우당 1 bit와 같은 작은 메모리를 사용하면서 더 좋은 성능을 보이는 것을 확인했다.

목차

요약
ABSTRACT
I. 서론
II. 동기
III. CMHLL
IV. 성능 평가
V. Related work
VI. 결론
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-001475814