메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국응용언어학회 응용언어학 응용언어학 제39권 제3호
발행연도
2023.9
수록면
103 - 129 (27page)
DOI
10.17154/kjal.2023.9.39.3.103

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study developed a method to assess the text level automatically regarding syntactic complexity. The new method was developed by improving the method of measuring the syntactic complexity of large-scale texts with various types. We implemented a Korean sentence syntactic complexity assessment model based on the deep learning models, especially the Korean BERT models. In particular, the KcBERT-based model, fine-tuned through the “National Institute of Korean Language Dependency-Parsed Corpus (v.2.0)”, showed excellent performance with an accuracy of 0.949. This model is expected to contribute to establishing an integrated model to assess the text level as the sub-factor model. By segmenting the text assessment model by factors, it could overcome the limitations of the existing research using unexplainable deep learning models to provide a direction for more sophisticated educational treatment.

목차

I. 서론
Ⅱ. 이론적 배경
Ⅲ. 연구 방법
Ⅳ. 연구 결과
Ⅴ. 연구의 의의 및 후속 연구 방향
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088158636