메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
신희정 (Dong-Eui University)
저널정보
한국무역연구원 무역연구 무역연구 제19권 제1호
발행연도
2023.2
수록면
445 - 463 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Purpose – This study investigates whether the future earnings predictability of the fundamental variables (AFS) is different from that of discretionary accruals. Given that AFS is the aggregate score index based on financially fundamental variables which predict the change in future earnings, AFS information is expected to be distinct from discretionary accruals which convey information on earnings persistence, but contain accruals estimation errors. Design/Methodology/Approach – This study uses AFS estimated using Penman and Zhang (2006) variables as the fundamental variable and discretionary accruals measurements according to Dechow et al. (1995) and Kothari et al. (2005). Frequency analysis and portfolio tests on firms listed in Korean stock exchanges (KSE) are conducted. Also, the hypothesis is verified by regression analysis with robust statistic test. Findings – The findings are as follows. First, AFS systematically mitigates the negative effect of discretionary accruals on future earnings increases. Additionally, AFS-based 12 month buy-hold returns are effective, but the discretionary accruals-based returns are not, in part. These results hold consistently on both the portfolio test and regression analyses. Research Implications – The results imply AFS contains information on future earnings increases independent of discretionary accruals. This study contributes to academic research by suggesting the future earnings predictability of accounting information based on financial statement analysis. Also, this study has practical implications in that two measures reflect the partially indifferent information of each other, and suggest an investment strategy exploiting ex-ante information.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0