메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Dedy Suryadi (Universitas Katolik Parahyangan) Paulina Kus Ariningsih (Universitas Katolik Parahyangan) Steven Adi Wiguna (Universitas Katolik Parahyangan)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.22 No.4
발행연도
2023.12
수록면
399 - 413 (15page)
DOI
10.7232/iems.2023.22.4.399

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a framework to value an image on the social media Instagram as a tool to build engagement and positive customer responses through Machine Learning techniques. The proposed valuation process is performed by mining the salient relation between an image"s properties and the corresponding users" likes. Various Machine Learning models are applied using the Context, Content, and Composition features to capture each property"s impact on the user"s liking behavior. The case study involves 20,150 responses to 800 pictures from 7 coffee shop Instagram accounts. In the case study, the Random Forest model provides the best accuracy of 83.840% to predict whether an image has a high likeability (i.e., at least 50% of people like an image) or not. The feature importance values of Random Forest suggest that the essential features in determining image likeability are the Composition features, i.e., Lightness, Dominant Color, Saturation, and Hue. Potential further research is suggested in exploring similar analyses on the other food and beverage businesses.

목차

ABSTRACT
1. INTRODUCTION
2. LITERATURE REVIEW
3. METHODOLOGY
4. RESULT
5. DISCUSSION
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088526303