메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박정민 (세이프모션) 송진규 (전남대학교) 이준웅 (전남대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제30권 제1호
발행연도
2024.1
수록면
33 - 44 (12page)
DOI
10.5302/J.ICROS.2024.23.0168

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, there has been an increasing need for algorithms capable of precisely and rapidly recognizing vehicles at night via smart control of headlamps. In this study, we constructed an algorithm that could detect vehicles approaching the main vehicle and vehicles moving in the same direction as the main vehicle through images taken in front of the vehicle on a road at night. The algorithm mainly involved 1) the generation of vehicle candidates (VCs), 2) the classification of VCs, and 3) the tracking of VCs. VC generation generally begins with the extraction of light-blobs from an image and the pairing of these blobs. However, because various lights are mixed, it is difficult to identify which of these lights originate from vehicles. To solve this problem, we constructed multiple feature maps that are likely to closely relate to the light emitted from head and tail lamps and calculated the stereo disparity. The feature maps and stereo disparity were used for light-blob pairing to generate VCs. Subsequently, VC classification and tracking were performed. VC classification was performed using a convolutional neural network. The classifier indicated with probability whether the VC was a vehicle approaching the main vehicle, a vehicle going in the same direction as the main vehicle, or a non-vehicle. VC tracking performed via a Kanade−Lucas−Tomasi-based feature tracker enabled robust vehicle detection between consecutive input images. We showed that the proposed algorithm can be applied to the control of smart headlamps through real vehicle experiments.

목차

Abstract
I. 서론
II. 관련 연구
III. 차량 검출 알고리즘
IV. 실험결과
V. 결론
REFERENCE

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089272439