메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jose Ceniceros (Hamilton College) Mohamed Elhamdadi (University of South Florida) Josef Komissar (Syracuse University) Hitakshi Lahrani (University of South Florida)
저널정보
대한수학회 대한수학회논문집 Communications of the KMS Vol.39 No.1
발행연도
2024.1
수록면
223 - 245 (23page)
DOI
10.4134/CKMS.c220360

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We study RNA foldings and investigate their topology using a combination of knot theory and embedded rigid vertex graphs. Knot theory has been helpful in modeling biomolecules, but classical knots emphasize a biomolecule's entanglement while ignoring their intrachain interactions. We remedy this by using stuck knots and links, which provide a way to emphasize both their entanglement and intrachain interactions. We first give a generating set of the oriented stuck Reidemeister moves for oriented stuck links. We then introduce an algebraic structure to axiomatize the oriented stuck Reidemeister moves. Using this algebraic structure, we define a coloring counting invariant of stuck links and provide explicit computations of the invariant. Lastly, we compute the counting invariant for arc diagrams of RNA foldings through the use of stuck link diagrams.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0