메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
구본하 (충남대학교) 이지예 (한국원자력안전재단) 강형구 (한양대학교)
저널정보
한국금융정보학회 금융정보연구 금융정보연구 제13권 제1호
발행연도
2024.2
수록면
63 - 88 (26page)
DOI
10.35214/rfis.13.1.202402.003

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
While the impact of investor sentiment on the stock market has been extensively studied, there remains a notable gap in understanding similar dynamics in the bond market. To address this gap, this study examines the relationship between credit spreads and textual sentiment. Using natural language processing, we extract firm-specific sentiment expressed in news articles and blog posts and examine it them based on textual tone and emotion. Our findings are as follows. First, we find that sentiment is positively related to the subsequent decline in credit spreads. Sentiment derived from the news is more predictive of credit spreads than the sentiment derived from the blogs. Notably, the relationship between sentiment and credit spreads varies across market types. There is a negative correlation between sentiment and the following month's credit spread for KOSPI-listed firms, while a positive correlation is observed for KOSDAQ-listed firms. During crisis periods, such as the US-China trade war and COVID-19, the impact of sentiment on credit spreads increases. A long-short portfolio strategy based on sentiment generates significant profits, confirming the economic importance and the potential for investors to use sentiment analysis to generate returns.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0